258 research outputs found

    Multi-scale Orderless Pooling of Deep Convolutional Activation Features

    Full text link
    Deep convolutional neural networks (CNN) have shown their promise as a universal representation for recognition. However, global CNN activations lack geometric invariance, which limits their robustness for classification and matching of highly variable scenes. To improve the invariance of CNN activations without degrading their discriminative power, this paper presents a simple but effective scheme called multi-scale orderless pooling (MOP-CNN). This scheme extracts CNN activations for local patches at multiple scale levels, performs orderless VLAD pooling of these activations at each level separately, and concatenates the result. The resulting MOP-CNN representation can be used as a generic feature for either supervised or unsupervised recognition tasks, from image classification to instance-level retrieval; it consistently outperforms global CNN activations without requiring any joint training of prediction layers for a particular target dataset. In absolute terms, it achieves state-of-the-art results on the challenging SUN397 and MIT Indoor Scenes classification datasets, and competitive results on ILSVRC2012/2013 classification and INRIA Holidays retrieval datasets

    Efficient On-the-fly Category Retrieval using ConvNets and GPUs

    Full text link
    We investigate the gains in precision and speed, that can be obtained by using Convolutional Networks (ConvNets) for on-the-fly retrieval - where classifiers are learnt at run time for a textual query from downloaded images, and used to rank large image or video datasets. We make three contributions: (i) we present an evaluation of state-of-the-art image representations for object category retrieval over standard benchmark datasets containing 1M+ images; (ii) we show that ConvNets can be used to obtain features which are incredibly performant, and yet much lower dimensional than previous state-of-the-art image representations, and that their dimensionality can be reduced further without loss in performance by compression using product quantization or binarization. Consequently, features with the state-of-the-art performance on large-scale datasets of millions of images can fit in the memory of even a commodity GPU card; (iii) we show that an SVM classifier can be learnt within a ConvNet framework on a GPU in parallel with downloading the new training images, allowing for a continuous refinement of the model as more images become available, and simultaneous training and ranking. The outcome is an on-the-fly system that significantly outperforms its predecessors in terms of: precision of retrieval, memory requirements, and speed, facilitating accurate on-the-fly learning and ranking in under a second on a single GPU.Comment: Published in proceedings of ACCV 201

    PlaNet - Photo Geolocation with Convolutional Neural Networks

    Full text link
    Is it possible to build a system to determine the location where a photo was taken using just its pixels? In general, the problem seems exceptionally difficult: it is trivial to construct situations where no location can be inferred. Yet images often contain informative cues such as landmarks, weather patterns, vegetation, road markings, and architectural details, which in combination may allow one to determine an approximate location and occasionally an exact location. Websites such as GeoGuessr and View from your Window suggest that humans are relatively good at integrating these cues to geolocate images, especially en-masse. In computer vision, the photo geolocation problem is usually approached using image retrieval methods. In contrast, we pose the problem as one of classification by subdividing the surface of the earth into thousands of multi-scale geographic cells, and train a deep network using millions of geotagged images. While previous approaches only recognize landmarks or perform approximate matching using global image descriptors, our model is able to use and integrate multiple visible cues. We show that the resulting model, called PlaNet, outperforms previous approaches and even attains superhuman levels of accuracy in some cases. Moreover, we extend our model to photo albums by combining it with a long short-term memory (LSTM) architecture. By learning to exploit temporal coherence to geolocate uncertain photos, we demonstrate that this model achieves a 50% performance improvement over the single-image model

    Fatigue modelling for gas nitriding

    Get PDF
    The present study aims to develop an algorithm able to predict the fatigue lifetime of nitrided steels. Linear multi-axial fatigue criteria are used to take into account the gradients of mechanical properties provided by the nitriding process. Simulations on rotating bending fatigue specimens are made in order to test the nitrided surfaces. The fatigue model is applied to the cyclic loading of a gear from a simulation using the finite element software Ansys. Results show the positive contributions of nitriding on the fatigue strength.&nbsp

    Compact Deep Aggregation for Set Retrieval

    Full text link
    The objective of this work is to learn a compact embedding of a set of descriptors that is suitable for efficient retrieval and ranking, whilst maintaining discriminability of the individual descriptors. We focus on a specific example of this general problem -- that of retrieving images containing multiple faces from a large scale dataset of images. Here the set consists of the face descriptors in each image, and given a query for multiple identities, the goal is then to retrieve, in order, images which contain all the identities, all but one, \etc To this end, we make the following contributions: first, we propose a CNN architecture -- {\em SetNet} -- to achieve the objective: it learns face descriptors and their aggregation over a set to produce a compact fixed length descriptor designed for set retrieval, and the score of an image is a count of the number of identities that match the query; second, we show that this compact descriptor has minimal loss of discriminability up to two faces per image, and degrades slowly after that -- far exceeding a number of baselines; third, we explore the speed vs.\ retrieval quality trade-off for set retrieval using this compact descriptor; and, finally, we collect and annotate a large dataset of images containing various number of celebrities, which we use for evaluation and is publicly released.Comment: 20 page

    A Dense-Depth Representation for VLAD descriptors in Content-Based Image Retrieval

    Full text link
    The recent advances brought by deep learning allowed to improve the performance in image retrieval tasks. Through the many convolutional layers, available in a Convolutional Neural Network (CNN), it is possible to obtain a hierarchy of features from the evaluated image. At every step, the patches extracted are smaller than the previous levels and more representative. Following this idea, this paper introduces a new detector applied on the feature maps extracted from pre-trained CNN. Specifically, this approach lets to increase the number of features in order to increase the performance of the aggregation algorithms like the most famous and used VLAD embedding. The proposed approach is tested on different public datasets: Holidays, Oxford5k, Paris6k and UKB

    The Role of Local Intrinsic Dimensionality in Benchmarking Nearest Neighbor Search

    Get PDF
    This paper reconsiders common benchmarking approaches to nearest neighbor search. It is shown that the concept of local intrinsic dimensionality (LID) allows to choose query sets of a wide range of difficulty for real-world datasets. Moreover, the effect of different LID distributions on the running time performance of implementations is empirically studied. To this end, different visualization concepts are introduced that allow to get a more fine-grained overview of the inner workings of nearest neighbor search principles. The paper closes with remarks about the diversity of datasets commonly used for nearest neighbor search benchmarking. It is shown that such real-world datasets are not diverse: results on a single dataset predict results on all other datasets well.Comment: Preprint of the paper accepted at SISAP 201

    Re-ranking for Writer Identification and Writer Retrieval

    Full text link
    Automatic writer identification is a common problem in document analysis. State-of-the-art methods typically focus on the feature extraction step with traditional or deep-learning-based techniques. In retrieval problems, re-ranking is a commonly used technique to improve the results. Re-ranking refines an initial ranking result by using the knowledge contained in the ranked result, e. g., by exploiting nearest neighbor relations. To the best of our knowledge, re-ranking has not been used for writer identification/retrieval. A possible reason might be that publicly available benchmark datasets contain only few samples per writer which makes a re-ranking less promising. We show that a re-ranking step based on k-reciprocal nearest neighbor relationships is advantageous for writer identification, even if only a few samples per writer are available. We use these reciprocal relationships in two ways: encode them into new vectors, as originally proposed, or integrate them in terms of query-expansion. We show that both techniques outperform the baseline results in terms of mAP on three writer identification datasets

    Cr cluster characterization in Cu-Cr-Zr alloy after ECAP processing and aging using SANS and HAADF-STEM

    Get PDF
    International audienceThe precipitation of nano-sized Cr clusters was investigated in a commercial Cu-1Cr-0.1Zr (wt.%) alloy processed by Equal-Channel Angular Pressing (ECAP) and subsequent aging at 550 °C for 4 hours using small angle neutron scattering (SANS) measurements and high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM). The size and volume fraction of nano-sized Cr clusters were estimated using both techniques. These parameters assessed from SANS (d~3.2 nm, Fv~1.1 %) agreed reasonably with those from HAADF-STEM (d ~2.5 nm, Fv~2.3%). Besides nano-sized Cr clusters, HAADF-STEM technique evidenced the presence of rare cuboid and spheroid sub-micronic Cr particles about 380-620 nm mean size. Both techniques did not evidence the presence of intermetallic CuxZry phases within the aging conditions
    corecore